
Eur. Phys. J. D 19, 379–388 (2002)
DOI: 10.1140/epjd/e20020087 THE EUROPEAN

PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. In the periodic orbit quantization of physical systems, usually only the leading-order ~ contri-
bution to the density of states is considered. Therefore, by construction, the eigenvalues following from
semiclassical trace formulae generally agree with the exact quantum ones only to lowest order of ~. In
different theoretical work the trace formulae have been extended to higher orders of ~. The problem re-
mains, however, how to actually calculate eigenvalues from the extended trace formulae since, even with ~

corrections included, the periodic orbit sums still do not converge in the physical domain. For lowest-order
semiclassical trace formulae the convergence problem can be elegantly, and universally, circumvented by
application of the technique of harmonic inversion. In this paper we show how, for general scaling chaotic
systems, also higher-order ~ corrections to the Gutzwiller formula can be included in the harmonic in-
version scheme, and demonstrate that corrected semiclassical eigenvalues can be calculated despite the
convergence problem. The method is applied to the open three-disk scattering system, as a prototype of a
chaotic system.

PACS. 03.65.Sq Semiclassical theories and applications

1 Introduction

The relation between the eigenvalue spectrum of a quan-
tum system and the periodic orbits of the corresponding
classical system is a question of fundamental importance
for both integrable and chaotic dynamical systems. The
well-established Gutzwiller trace formula [1–3] for classi-
cally chaotic systems and its analogue for integrable sys-
tems, the Berry-Tabor formula [4,5], provide the semiclas-
sical density of states in terms of a sum over all periodic
orbits of the system. However, each trace formula is only
the leading-order term of an expansion of the exact density
of states in powers of ~, and therefore in general the result-
ing semiclassical eigenvalues are only approximations to
the exact quantum ones. In recent years, two basic meth-
ods have been developed for determining higher-order ~
corrections to the Gutzwiller trace formula in terms of
periodic orbit contributions [6–11]. Unfortunately, even
with ~ corrections included, the trace formulae usually suf-
fer from being divergent in the region where the physical
eigenvalues or resonances are located. For specific systems,
higher-order ~ corrections to the semiclassical eigenvalues
have explicitly been calculated by cycle expansion tech-
niques [6,9,10]. However, this method is applicable only
to systems with special features, namely to hyperbolic sys-
tems with a known complete symbolic dynamics.

Recently, it has been demonstrated how the conver-
gence problems of the semiclassical trace formulae can
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be circumvented by the application of harmonic inversion
techniques [12–14]. The harmonic inversion method is ca-
pable of extracting semiclassical eigenvalues from a finite
set of periodic orbits with very high precision and resolu-
tion. In contrast to other semiclassical methods, harmonic
inversion does not require any special properties of the sys-
tem, and can therefore be applied to a wide range of phys-
ical systems. In references [14–16] a general procedure has
been developed for including higher-order ~ corrections to
the trace formulae in the harmonic inversion scheme. So
far, this method has only been tested for an integrable sys-
tem, viz. the circle billiard. The general procedure, how-
ever, does not depend on the type of the underlying clas-
sical dynamics, and is applicable also to chaotic systems.
In this paper, we demonstrate how the method works for
chaotic systems, and apply it to the open three-disk scat-
terer, which has become a standard example for the semi-
classical quantization of chaotic systems [13,14,17–21].

The harmonic inversion method is used in two direc-
tions: first, we carry out a harmonic analysis of the spec-
trum of the differences between the exact (complex) quan-
tum eigenvalues and the semiclassical resonances of the
three-disk system. We show how this enables one to de-
termine, for each orbit, the first-order ~ correction term
(and, in principle, all higher-order correction terms) to the
Gutzwiller formula. We confirm our results by comparing
with the values calculated by a specialization of an analyt-
ical approach developed by Vattay and Rosenqvist [8,9]
for two-dimensional billiards [10]. Second, we take the
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analytical correction terms to the Gutzwiller formula and
compute, using the classical periodic orbit data and har-
monic inversion, the first-order ~ corrections to the semi-
classical resonances of the three-disk system. Thus we il-
lustrate that corrected semiclassical eigenvalues can be
calculated by harmonic inversion despite the convergence
problems of the trace formulae. We compare the zeroth
and first-order approximations to the resonances with the
exact quantum eigenvalues, and can quantitatively assess
the increase in accuracy produced by including the next-
order corrections.

2 Higher-order ~ corrections to Gutzwiller’s
trace formula

Gutzwiller’s trace formula for chaotic systems gives a
semiclassical approximation to the response function (i.e.,
the trace of the Green’s function) of a quantum sys-
tem in terms of the periodic orbits of the correspond-
ing classical system. The semiclassical response function
consists of a smooth background, and an oscillating part
g(E) = ḡ(E) + gosc(E), where the oscillating part is given
by [3,22]

gosc(E) = −i
∑
po

Tpo

r|det(Mpo − 1)|1/2

× exp
[
i
(
Spo

~
− µpo

π

2

)]
· (1)

The sum in (1) runs over all periodic orbits (po) of the
system, including multiple traversals. Here, Tpo and Spo

are the period and the action of the orbit, Mpo and µpo

denote the monodromy matrix and the Maslov index, and
the repetition number r counts the traversals of the un-
derlying primitive orbit (“primitive” means that there is
no sub-period). The semiclassical density of states ρ(E) is
related to the response function via

ρ(E) = − 1
π

Im g(E). (2)

In general, the semiclassical eigenvalues or resonances ob-
tained from the Gutzwiller formula agree with the exact
quantum ones only in leading order of ~. To improve the
accuracy of the semiclassical eigenvalues, higher-order ~
correction terms to the Gutzwiller formula have to be in-
cluded. Two different methods for the calculation of such
higher-order ~ terms have been derived for chaotic sys-
tems, one by Gaspard and Alonso [6,7], and the other
by Vattay and Rosenqvist [8–10]. The latter method has
been specialized to two-dimensional chaotic billiards in
reference [10]. An extension of the method of Gaspard
and Alonso has recently been published in reference [11].
We will adopt the method of Vattay and Rosenqvist to
compute the first-order ~ corrections to the semiclassical
resonances of the open three-disk scatterer.

Vattay and Rosenqvist give a quantum generalization
of the Gutzwiller formula, which is of the form

g(E) = ḡ(E) +
1
i~
∑
p

∑
l

(
Tp(E)− i~

d lnRlp(E)
dE

)

×
∞∑
r=1

(
Rlp(E)

)r
exp

(
i
~
rSp(E)

)
. (3)

The first sum runs over all primitive periodic orbits; Tp
and Sp are the traversal time and the action of the pe-
riodic orbit, respectively. The sum over r corresponds to
multiple traversals of the primitive orbit. The quantities
Rlp are associated with the local eigenspectra determined
by the local Schrödinger equation in the neighbourhood
of the periodic orbits. An expansion of the quantities Rlp
in powers of ~,

Rl(E) = exp

{ ∞∑
m=0

(
i~
2

)m
C

(m)
l

}

≈ exp
(
C

(0)
l

)(
1 +

i~
2
C

(1)
l + . . .

)
, (4)

yields the ~ expansion of the generalized trace formula (3).
For two-dimensional hyperbolic systems, the zeroth-order
terms are given by

exp
(
C

(0)
l

)
=

eiµpπ/2

|λp|1/2λlp
, (5)

where µp and λp are the Maslov index and the expanding
stability eigenvalue (i.e., the stability eigenvalue with an
absolute value larger than one) of the orbit, respectively.
By summation over l, the Gutzwiller trace formula is re-
gained as zeroth-order approximation to equation (3). If
the zeroth-order terms do not depend on the energy, as is
the case for billiard systems, the first-order correction to
the Gutzwiller formula can be written as

g1(E) =
1
i~
∑
po

∑
l

Tpo(E)
r

exp
(
C

(0)
l

)
× i~

2
C

(1)
l exp

(
i
~
Spo(E)

)
, (6)

where the first sum in equation (6) now runs over all pe-
riodic orbits, including multiple traversals, and r is the
repetition number with respect to the underlying primi-
tive orbit.

An explicit recipe for the calculation of the correction
terms C(1)

l for two-dimensional chaotic billiards was given
in reference [10]. The correction terms must in general be
calculated numerically from the periodic orbit data. A nu-
merical code which determines the first-order corrections
for two-dimensional chaotic billiards can also be found in
reference [10]. We have used that code to compute the
correction terms C(1)

l for the three-disk system for a com-
parison with the correction terms calculated by harmonic
inversion.



K. Weibert et al.: Higher-order ~ corrections in the semiclassical quantization of chaotic billiards 381

3 The open three-disk scatterer

As a model system for the calculation of higher-order ~
corrections to the Gutzwiller formula by harmonic inver-
sion, we consider the open three-disk system, which con-
sists of three equally spaced hard disks of unit radius. This
system, in particular the case of the relatively large disk
separation d = 6, has served as an archetype for the appli-
cation of semiclassical quantization techniques in many in-
vestigations in recent years [13,14,18–21]. We will consider
the case d = 6, as well as the small separation d = 2.5. In
our calculations, we make use of the symmetry reduction
of the three-disk system introduced in references [18,23]
and concentrate on states of the A1 subspace.

As for all billiard systems, the shape of the periodic
orbits in the three-disk system is independent of the wave
number k =

√
2mE/~, and the action scales as

S/~ = ks, (7)

where the scaled action s is equal to the physical length of
the orbit. We consider the density of states as a function
of the wave number

ρ(k) = − 1
π

Im g(k), (8)

with a scaled response function g(k). Since the wave num-
ber k is proportional to ~−1, it can be considered as an
effective Planck constant,

k = ~−1
eff . (9)

The ~ expansion of the exact quantum response function
can therefore be written as a power series in k−1:

g(k) = ḡ(k) + gosc(k) (10)

with

gosc(k) =
∞∑
n=0

gn(k) =
∞∑
n=0

1
kn

∑
po

A(n)
po eispok. (11)

The second sum runs over all periodic orbits including
multiple traversals. The zeroth-order amplitudes A(0)

po cor-
respond to the Gutzwiller formula, whereas for n > 0, the
amplitudes A(n)

po give the nth-order corrections gn(k) to
the response function.

Applying the Gutzwiller trace formula to the (symme-
try reduced) three-disk system yields for the zeroth-order
amplitudes in equation (11) (A1 subspace)

A(0)
po = −i

∑
po

spo e−iπ2 µpo

r|det(Mpo − 1)|1/2

= −i
∑
po

(−1)ls
spo

r|(λpo − 1)( 1
λpo
− 1)|1/2

, (12)

where Mpo is the monodromy matrix of the orbit, ls is the
symbol length, spo the scaled action, and λpo the expand-
ing stability eigenvalue of the orbit. The Maslov index µpo

for this system is given by 2ls. The quantity r designates
the repetition number with respect to the corresponding
primitive orbit. The first-order amplitudes of the ~ expan-
sion (11) following from equation (6) read

A(1)
po =

spo

r

∑
l

(−1)ls

|λpo|1/2λlpo

C
(1)
l

2~k
· (13)

Since the terms C(1)
l are proportional to the momentum

~k, as was shown in reference [10], the amplitudes are
independent of the scaling parameter k. The correction
terms C(1)

l have to be determined numerically. We use the
code developed by Rosenqvist and Vattay [10,24]. The
code requires the flight times between the bounces and
the reflection angles as an input. These parameters have
to be calculated numerically for each periodic orbit. As
the contributions to the amplitude (13) for different l are
proportional to |λpo|−l−

1
2 , the sum over l converges fast if

the absolute value of the stability eigenvalue λpo is large.
For most orbits, the leading term l = 0 turns out to be
already sufficient. It is only for the very shortest orbits
that terms of higher order in l have to be included to
ensure convergence of the sum to within, say, 3 significant
digits.

4 Harmonic analysis of the quantum
spectrum

4.1 Theory

In references [14,16] it was demonstrated that the ampli-
tudes A(n)

po of the ~ expansion (11) can be obtained by a
harmonic inversion analysis of the exact quantum spec-
trum. The general procedures do not depend on any spe-
cial properties of the system and can be applied to both
integrable and chaotic systems. In reference [16], they were
tested for the circle billiard, as an example of an integrable
system. We will now use the same procedures for the open
three-disk system, as a representative of a chaotic system.

We start by briefly recapitulating the main ideas of
the procedures developed in references [14,16]. The exact
quantum mechanical response function, in terms of the
wave number k, can be written as

gqm(k) =
∑
j

mj

k − kj + i0
, (14)

where the kj are the exact eigenvalues or resonances of k,
and mj are their multiplicities. Equation (11) gives the ~
expansion of (14) in terms of periodic orbit contributions.
The first-order amplitudes A(0)

po of the expansion (11)
can be determined by adjusting the exact response func-
tion (14) to the form of the semiclassical approximation

gosc(k) ≈
∑
po

A(0)
po eikspo (15)
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by harmonic inversion [25]. Note that for chaotic billiards
the leading-order amplitudes A(0)

po as well as the higher-
order amplitudes A(n)

po are independent of the wave num-
ber k. In a direct harmonic analysis of the quantum spec-
trum only the zeroth-order term of the expansion (11)
fulfills the ansatz for the harmonic inversion procedure.
The higher-order terms act as a kind of weak noise which
is separated from the zeroth-order “signal” by the har-
monic inversion procedure. The direct harmonic analy-
sis of the quantum signal will therefore yield exactly the
lowest-order amplitudes A(0)

po .
The nth-order amplitudes A(n)

po can be determined if
the exact eigenvalues kj and their (n− 1)st-order approx-
imations kj,n−1 are given. The (n − 1)st-order approxi-
mation to the response function can be written in the
form (14), with kj replaced with the approximation kj,n−1.
One can then calculate the difference between the exact
quantum mechanical and the (n−1)st-order response func-
tion and compare it with the expression resulting from the
expansion (11),

gqm(k)−
n−1∑
m=0

gm(k) =
∞∑
m=n

gm(k)

=
∞∑
m=n

1
km

∑
po

A(m)
po eispok. (16)

The leading-order terms in (16) are ∼ k−n, i.e., multipli-
cation by kn yields

kn

[
gqm(k)−

n−1∑
m=0

gm(k)

]
=
∑
po

A(n)
po eispok+O

(
1
k

)
· (17)

The right-hand side of (17) now has assumed a form which
is again suited to the harmonic inversion procedure. More
precisely, the harmonic inversion of the weighted difference
spectrum (17) will yield the periods spo and the nth-order
amplitudes A(n)

po of the ~ expansion (11).

4.2 Application to the three-disk scattering system

We now apply the procedure to the three-disk system
with disk separation d = 6. As a first step we perform
a harmonic analysis of the exact quantum spectrum to
obtain the leading-order (n = 0) periodic orbit contri-
butions to the density of states. The exact quantum val-
ues for d = 6 were taken from Wirzba [21,26,27]. Fig-
ure 1 shows the quantum mechanical density of states
ρ(k) = (−1/π) Im g(k) for real values of the wave num-
ber k resulting from the four leading bands of the A1

subspace. Note that this set of resonances is of course
not complete as the subleading bands with large negative
imaginary part are not included.

The spectrum in Figure 1 served as the signal for the
harmonic inversion procedure. The results of the analysis
turned out to be more accurate if the lowest part of the sig-
nal, determined by the “most quantum” resonances with
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Fig. 1. Quantum mechanical density of states ρ(k) =
(−1/π) Im g(k) of the three-disk system with disk separation
d = 6 (A1 subspace) as a function of real values of the wave
number k. Only resonances of the four leading bands have been
included. [Data courtesy of A. Wirzba.]
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Fig. 2. Imaginary parts of the amplitudes of the leading-order
(n = 0) periodic orbit contributions to the density of states
of the three-disk system with disk separation d = 6 as a func-
tion of the scaled actions of the symmetry reduced orbits. Solid

lines: semiclassical amplitudes A(0)
po versus scaled actions of the

symmetry reduced orbits, calculated directly from classical me-
chanics. Crosses: results from the harmonic inversion of the
exact quantum spectrum (A1 subspace).

very small real part, is cut off. We analyzed the spectrum
in the range Re k ∈ [50, 250] to obtain the periodic orbit
contributions in two different intervals of the scaled ac-
tion. The results are presented in Figure 2. The solid lines
give the sizes of the imaginary parts of the semiclassical
amplitudes A(0)

po calculated directly from equation (12) us-
ing the classical periodic orbit data, as a function of the
scaled action of the orbits. The crosses show the ampli-
tudes resulting from the harmonic inversion of the quan-
tum spectrum. Note the different scales of the two plots.
The results of the harmonic inversion are seen to be in
excellent agreement with those from the classical calcu-
lations of the amplitudes A(0)

po entering into Gutzwiller’s
trace formula, clearly confirming the validity of the latter.
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Fig. 3. Three-disk system with disk separation d = 6: weighted
difference spectrum k∆ρ(k) = k(ρqm(k)− ρsc(k)) between the
quantum mechanical and the semiclassical density of states (A1

subspace) as a function of the wave number k.

In a second step, we now determine the next-
to-leading-order ~ corrections to the Gutzwiller trace
formula for the three-disk system by the harmonic anal-
ysis of the difference spectrum between the exact quan-
tum resonances and the semiclassical resonances of the
A1 subspace. The semiclassical resonances for disk sepa-
ration d = 6 had been calculated by Wirzba [21,26,27]
from a cycle expansion of the Gutzwiller-Voros zeta func-
tion. [Since the Gutzwiller-Voros zeta function is directly
related to the Gutzwiller trace formula without further ap-
proximations, the semiclassical resonances resulting from
both expressions will be the same.] The weighted differ-
ence spectrum is shown in Figure 3. Note that due to the
limited radius of convergence of the cycle expansion only
resonances with Im k & −0.8 were available and could be
included in the signal.

In Figure 4, the crosses designate the results for the
first-order amplitudes A(1)

po obtained from the harmonic
inversion of the difference spectrum shown in Figure 3,
which was analyzed in the region Re k ∈ [100, 250]. For
comparison, we also determined the first-order amplitudes
A(1)

po for each orbit following the method of Vattay and
Rosenqvist described above (see Eq. (13)). These results
are represented in Figure 4 by solid lines.

For almost all orbits, the harmonic inversion results for
A(1)

po are seen to be in perfect agreement with the ampli-
tudes calculated by the method of references [8–10]. There
is, however, one exception, namely the distinct discrep-
ancy for the orbit with symbolic code “1” (scaled action
s ≈ 4.267949). The deviation is systematic and appears
in the same way if the parameters of the harmonic inver-
sion procedure (such as signal length etc.) are varied. This
point still needs further clarification. A possible explana-
tion for the discrepancy may lie in the fact that the set of
resonances from which the signal was constructed was not
complete, since only resonances near the real axis could
be included. However, this does not explain why only one
orbit is strongly affected. On the other hand, the error
might also be due to the theory of references [8–10], or its
application to the three-disk system. In fact, the “1” orbit
is the orbit with the largest contributions from terms of
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Fig. 4. First-order ~ corrections to the trace formula of the
three-disk system with disk separation d = 6 as a function
of the scaled actions of the symmetry reduced orbits. Solid
lines: first-order amplitudes following from a direct evaluation
of equation (13). Crosses: results from the harmonic inversion
of the difference spectrum between exact quantum resonances
and semiclassical cycle expansion values (A1 subspace).

higher order in l to the sum in (13). The contributions
from the different l terms and the converged sum over l
of the five shortest orbits are given in Table 1. For com-
parison, the last column of Table 1 shows the correspond-
ing values following from the amplitudes of the harmonic
inversion results. The “1” orbit exhibits the largest devi-
ation between the l = 0 contribution and the converged
sum over l, followed by the “0” orbit. For orbits with a
symbol length of 2 or longer, the contributions of higher l
terms to the amplitude A(1)

po are already so small (due to
the large absolute value of the stability eigenvalue λ) that
it is impossible to decide whether or not there is a dis-
crepancy between these terms and the harmonic inversion
results. (Note that this is also true for the period dou-
bling of the orbits “0” and “1” in Tab. 1.) However, the
harmonic inversion results for the “0” orbit, which also
shows a relatively large contribution from the l = 1 term,
are in agreement with the theory. Again, it cannot be ex-
plained why only the “1” orbit is affected (although in
this case the reasons might lie in the special geometrical
properties of the “0” orbit).

Concluding our discussion of Figure 4 and Table 1, we
notice that the harmonic inversion results indeed confirm
the validity of the l = 0 approximation to the formula (6)
for orbits with large stability eigenvalues. On the other
hand, the results demonstrate that the theory of higher-
order ~ corrections to the Gutzwiller formula still con-
tains unanswered questions, and further investigations are
necessary.

5 Corrections to the semiclassical eigenvalues

We now turn to the problem of obtaining corrections
to the semiclassical eigenvalues of chaotic systems from
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Table 1. Correction terms C
(1)
l (in units of the momentum ~k) and their contributions C

(1)
l /λl to the first-order ~ amplitude (13)

for the five shortest periodic orbits of the three-disk system with d = 6. The values are compared with the results obtained
by harmonic inversion (h.i.). The orbits are characterized by their symbolic code; their scaled action s and expanding stability
eigenvalue λ are also given. Note that the maximum correction to the l = 0 contribution occurs for the orbit “1”, and is given
by the l = 1 term.

l C
(1)
l C

(1)
l /λl

P∞
l=0C

(1)
l /λl

hP∞
l=0C

(1)
l /λl

i
h.i.

0 0.625000 0.625000 0.690360 0.6934

“0” 1 1.125000 0.113648

s = 4.000000 2 −2.750000 −0.028064

λ = 9.898979 3 −14.750000 −0.015206

0 1.124315 1.124315 0.843867 1.055

“1” 1 3.661620 −0.311059

s = 4.267949 2 4.383308 0.031633

λ = −11.77146 3 1.162291 −0.000713

0 1.250000 1.250000 1.272357 1.259

2×“0” 1 2.250000 0.022962

s = 8.000000 2 −5.500000 −0.000573

λ = 97.98979 3 −29.500000 −0.000031

0 2.039795 2.039795 1.989582 2.019

“01” 1 6.278740 −0.050596

s = 8.316529 2 5.881196 0.000382

λ = −124.0948 3 −4.066328 0.000002

0 2.248630 2.248630 2.301937 2.270

2×“1” 1 7.323240 0.052850

s = 8.535898 2 8.766615 0.000457

λ = 138.5672 3 2.324582 0.000001

the ~ expansion (11) of the periodic orbit sum. A gen-
eral procedure for including higher-order ~ corrections in
the harmonic inversion scheme was developed in refer-
ences [14–16], where it was applied to the circle billiard
as an example of an integrable system. In the following,
we briefly recapitulate the main ideas of the procedure and
then apply the technique to the open three-disk system.

5.1 Theory

For periodic orbit quantization, usually only the zeroth-
order contributions A(0)

po to the expanded response func-
tion (11), corresponding to the Gutzwiller formula (or, for
integrable systems, the Berry-Tabor formula), are consid-
ered. In the harmonic inversion scheme for semiclassical
quantization [12–14], semiclassical approximations to the
eigenvalues or resonances are determined by adjusting the
Fourier transform of the principal periodic orbit sum

C0(s) =
∑
po

A(0)
po δ(s− spo) (18)

to the functional form of the corresponding exact quan-
tum expression (i.e., the Fourier transform of the exact
response function (14))

Cqm(s) = −i
∑
j

mj e−ikjs, (19)

with kj the eigenvalues or resonances and mj their
multiplicities.

Since for n ≥ 1 the asymptotic expansion (11) of the
semiclassical response function suffers from the singular-
ities at k = 0, higher-order ~ terms cannot directly be
included in the harmonic inversion scheme. Instead, the
correction terms to the semiclassical eigenvalues can be
calculated separately, order by order. We assume that the
(n−1)st-order ~ approximations kj,n−1 to the exact eigen-
values have already been obtained and the nth-order ap-
proximations kj,n are to be calculated. In terms of these
approximations to the eigenvalues, the difference between
the two subsequent approximations to the quantum me-
chanical response function reads

gn(k) =
∑
j

(
mj

k − kj,n + i0
− mj

k − kj,n−1 + i0

)
≈
∑
j

mj∆kj,n
(k − k̄j,n + i0)2

, (20)

with k̄j,n = 1
2 (kj,n + kj,n−1) and ∆kj,n = kj,n − kj,n−1.

Integration of (20) and multiplication by kn yields

Gn(k) = kn
∫
gn(k)dk =

∑
j

−mjk
n∆kj,n

k − k̄j,n + i0
· (21)
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Table 2. Zeroth (k0) and first (k1)-order approximations to the complex eigenvalues of the resonances of the three-disk system
with disk separation d = 6 (A1 subspace), obtained by harmonic inversion of a signal of length smax = 56. For comparison, the
exact quantum values kex are given (taken from Refs. [21,26,27]). Only resonances of the four leading bands with Im k ≥ −0.5
are included.

Rek0 Imk0 Rek1 Im k1 Re kex Im kex

0.75831 −0.12282 0.61295 −0.14993 0.69800 −0.07501

2.27428 −0.13306 2.22417 −0.13960 2.23960 −0.11877

3.78788 −0.15413 3.75695 −0.15903 3.76269 −0.14755

5.29607 −0.18679 5.27282 −0.19113 5.27567 −0.18322

6.79364 −0.22992 6.77417 −0.23345 6.77607 −0.22751

7.22422 −0.49541 7.21231 −0.48189 7.21527 −0.48562

8.27639 −0.27708 8.25953 −0.27932 8.26114 −0.27491

8.77919 −0.43027 8.76958 −0.42179 8.77247 −0.42410

9.74763 −0.32082 9.73320 −0.32201 9.73451 −0.31881

10.34423 −0.37820 10.33588 −0.37289 10.33819 −0.37371
...

...
...

...
...

...

150.09512 −0.23623 150.09449 −0.23613 150.09450 −0.23613

150.76086 −0.40911 150.76004 −0.40908 150.76004 −0.40906

151.09908 −0.22292 151.09826 −0.22298 151.09826 −0.22297

151.64342 −0.22327 151.64279 −0.22321 151.64279 −0.22320

152.24814 −0.38924 152.24733 −0.38920 152.24733 −0.38919

152.60380 −0.24729 152.60298 −0.24735 152.60298 −0.24733

153.19200 −0.21587 153.19138 −0.21583 153.19138 −0.21582

153.73475 −0.36935 153.73395 −0.36932 153.73395 −0.36931

154.11072 −0.27186 154.10992 −0.27192 154.10992 −0.27190

154.74201 −0.21392 154.74140 −0.21390 154.74140 −0.21389

The periodic orbit approximation to (21) is obtained from
the term gn(k) in the periodic orbit sum (11) by integra-
tion and multiplication by kn, yielding

Gn(k) = −i
∑
po

1
spo
A(n)

po eikspo +O
(

1
k

)
· (22)

One can now Fourier transform both (21) and (22), and
obtains (n ≥ 1)

Cn(s) ≡ 1
2π

∫ +∞

−∞
Gn(k)e−iksdk

= i
∑
j

mj(k̄j)n∆kj,ne−ik̄js (23)

h.i.= −i
∑
po

1
spo
A(n)

po δ(s− spo) . (24)

Equations (23, 24) imply that the ~ expansion of the semi-
classical eigenvalues can be obtained, order by order, by
adjusting the periodic orbit signal (24) to the functional
form of (23) by harmonic inversion (h.i.). The frequencies
k̄j of the periodic orbit signal (24) are the semiclassical
eigenvalues or resonances, averaged over different orders
of ~. Note that the accuracy of these values does not nec-
essarily increase with increasing order n. The corrections
∆kj,n to the eigenvalues are not obtained from the fre-
quencies, but from the amplitudes, mj(k̄j)n∆kj,n, of the
periodic orbit signal.

5.2 Application to the three-disk scattering system

We have applied the above procedure to the open three-
disk scatterer with disk separations d = 6 and d = 2.5.
For both cases, we first calculated the zeroth-order ~ ap-
proximations to the resonances and then determined the
first-order ~ corrections to the semiclassical results follow-
ing the scheme outlined above.

For disk separation d = 6, we used the periodic orbits
up to length smax = 56 to calculate the resonances in the
region 0 ≤ Re k ≤ 250. In the first-order amplitudes (13),
only the leading-order term l = 0 of the sum was included.
(The terms with l ≥ 1 contribute significantly only to the
“1” orbit and thus basically do not effect the semiclassi-
cal resonances.) The results for the first-order corrections
∆k1 were added to the semiclassical results to obtain the
first-order approximations k1 to the resonances. Table 2
shows part of the results in the regions Re k ∈ [0, 12] and
Rek ∈ [150, 155] with Im k ≥ −0.5. For comparison, the
exact quantum resonances kex from references [21,26,27]
are also given. We note that the semiclassical resonances
k0 obtained by harmonic inversion agree with the semi-
classical cycle expansion values from references [21,26,27]
to all digits given. Figure 5 compares the semiclassical er-
rors of the zeroth-order (crosses) and first-order (squares)
approximations as a function of the real part of the reso-
nances. The deviations of the real and imaginary parts
from the exact quantum values are shown separately.
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Fig. 5. The semiclassical errors of the zeroth (+) and first
(�)-order approximations to the complex eigenvalues of the
resonances of the three-disk system with d = 6, plotted as a
function of the real part of the resonances. Only resonances
with imaginary parts Im k ≥ −0.5 are included.

Only resonances with an imaginary part Im k ≥ −0.5 were
included in the plot.

The results presented in Figure 5 show that by includ-
ing the first-order corrections a significant improvement in
the accuracy of the real parts of the resonances is achieved.
This is evident from Figure 5 in spite of the fact that a one-
to-one correspondence between the zeroth and first-order
values plotted is difficult to establish with the naked eye.
For most resonances, the real part of the first-order ap-
proximation lies between two and five orders of magnitude
closer to the exact quantum values than the zeroth-order
approximation. Only for the “most quantum” resonances,
with very low real parts, the improvement is rather small.
The reason for this lies in the nature of the semiclassical
approximation as an approximation itself: in order to im-
prove these values, second or higher-order terms of the ~
expansion must be considered.

The accuracy of the imaginary parts of the semiclas-
sical resonances is less significantly increased by the first-
order corrections than that of the real parts. For some res-
onances, the zeroth-order approximation lies even closer
to the exact quantum values than the first-order approxi-
mation. This was also observed in references [6,10], where
the first-order ~ corrections to the resonances was calcu-
lated using the cycle expansion technique. As discussed
in [6,10], the first-order corrections to the periodic orbit
sum mainly improve the real part of the resonances, while
the imaginary part can be expected to be improved by
second-order ~ corrections.
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Fig. 6. As Figure 5, but for disk separation d = 2.5. Only
resonances with imaginary parts Imk ≥ −0.82 are included.

A similar behaviour can be found for disk separa-
tion d = 2.5. Here, we calculated the semiclassical res-
onances and their first-order ~ corrections in the range
0 ≤ Re k ≤ 90 and −0.82 ≤ Im k ≤ 0 from the periodic
orbits up to length smax = 12. In the first-order ampli-
tudes (13), again only the l = 0 term was included. Table 3
compares part of the results for the first-order approxi-
mations to the resonances with the zeroth-order approxi-
mations and the exact quantum values. The zeroth order
resonances k0 obtained by harmonic inversion agree with
the cycle expansion values calculated by Wirzba [21,26,27]
(not shown) to at least four significant digits.

Again, we determined the semiclassical error of the
first-order approximations to the resonances in compari-
son to that of the zeroth-order approximation. The results
are presented in Figure 6. The general behaviour of the
values is similar to that in the case d = 6 discussed above,
although the improvement of the accuracy achieved by the
first-order corrections is not as spectacular as for d = 6.
The reason for this may partly lie in the error induced by
the harmonic inversion method, which for d = 2.5 is larger
already in the zeroth-order approximation than for d = 6.
The results could in principle be improved by extending
the signal to longer orbits. On the other hand, in the part
of the spectrum considered, second and higher-order ~ cor-
rections may be more important than in the case d = 6.
However, it is evident from Figure 6 that, apart from the
resonances with very small real parts, the semiclassical
error of the real parts of the resonances could still be re-
duced, even for the small disk separation of d = 2.5, by the
first-order ~ corrections by one or two orders of magnitude.
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Table 3. Zeroth and first-order approximations to the complex eigenvalues of the resonances of the three-disk system with disk
separation d = 2.5 (A1 subspace), obtained from a signal of length smax = 12. The notations are the same as in Table 2. The
table contains the resonances in the region 1 ≤ Re k ≤ 90 and −0.82 ≤ Imk ≤ 0.

Rek0 Im k0 Rek1 Imk1 Rekex Imkex

4.58118 −0.08999 4.35123 −0.05580 4.46928 −0.00157

7.14428 −0.81079 6.90301 −0.66547 7.09171 −0.72079

13.00009 −0.65163 12.93645 −0.63795 12.95032 −0.62824

17.57004 −0.68486 17.45278 −0.65154 17.50423 −0.63526

18.92585 −0.78389 18.93139 −0.72879 18.92545 −0.76629

27.88820 −0.54319 27.86253 −0.55690 27.85779 −0.54993

30.38846 −0.11345 30.34790 −0.11469 30.35289 −0.10567

32.09670 −0.62237 32.05975 −0.61112 32.06937 −0.60774

36.50664 −0.38464 36.48222 −0.38774 36.48228 −0.38392

39.81392 −0.35801 39.78247 −0.35590 39.78597 −0.35087
...

...
...

...
...

...

65.68047 −0.27378 65.66353 −0.27480 65.66387 −0.27258

67.86889 −0.28815 67.85047 −0.28896 67.85151 −0.28656

69.34446 −0.31247 69.33251 −0.30929 69.33346 −0.30925

71.08294 −0.53828 71.06684 −0.53676 71.06727 −0.53534

74.85524 −0.30224 74.83975 −0.30093 74.84053 −0.29941

77.31939 −0.31303 77.30827 −0.31116 77.30881 −0.31071

80.41789 −0.36657 80.39883 −0.36525 80.40022 −0.36289

81.69995 −0.56162 81.68874 −0.55515 81.69091 −0.55547

83.87557 −0.50399 83.86231 −0.50159 83.86311 −0.50054

85.80058 −0.41490 85.79208 −0.41566 85.79189 −0.41529

6 Conclusions

In this paper we have demonstrated the power of the
harmonic inversion technique in explicitly determining
higher-order ~ corrections to the Gutzwiller trace for-
mula and to the semiclassical eigenvalues of a completely
chaotic system, namely the three-disk scattering system.
The method has been used in two directions:

(1) for the harmonic analysis of the exact quantum
spectrum,

(2) for the direct calculation of higher-order corrections
to the semiclassical eigenvalues from classical periodic
orbit data.

The harmonic analysis of the exact quantum spectrum
of the three-disk system with the “standard” literature
disk separation of d = 6 first yielded the zeroth-order
semiclassical amplitudes of the periodic orbit sum (i.e.,
the amplitudes entering the Gutzwiller formula), which
were found to be in perfect agreement with the Gutzwiller
amplitudes calculated directly from classical periodic or-
bit data. Next, from the exact quantum resonances and
their zeroth order approximations, we were able to com-
pute the first-order amplitudes applying harmonic inver-
sion to equation (17). We could verify the correctness of
the values obtained in this way by comparing with the
results of an alternative theoretical approach [8–10] for

calculating first-order corrections to the Gutzwiller for-
mula in chaotic billiards, which we implemented for the
three-disk system. The results turned out to be in very
good agreement (on the order of 1.5 per cent, or bet-
ter), with one notable exception, namely the “1” orbit, for
which a distinct discrepancy (on the order of 20 per cent)
persisted. We have discussed possible origins of the dis-
crepancy although an ultimate reason could not be iden-
tified. Therefore, in spite of the very good agreement of
the results in all other cases, we have to conclude that
the theory of ~ corrections to the Gutzwiller formula still
contains unanswered questions. [We note that in fact for
integrable systems there does not yet exist a general theory
for higher-order ~ corrections to the Berry-Tabor formula
at all.]

In the direct calculation of higher-order corrections to
semiclassical eigenvalues from classical periodic orbit data,
we first evaluated the first-order correction amplitudes to
the Gutzwiller formula as given by the theory of Vattay
and Rosenqvist, and then, by harmonic inversion of equa-
tion (24), determined the first-order ~ corrections to the
semiclassical (complex) eigenvalues of resonances of the
three-disk scattering system with disk separations d = 6
and d = 2.5. For both distances, the semiclassical error, as
compared to the exact quantum values, of the zeroth-order
results (obtained from the Gutzwiller formula by har-
monic inversion) for the real parts of the resonances could
be significantly reduced by including the first-order ~
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corrections: the accuracy was increased by two to five or-
ders of magnitude for d = 6, and still by one to two orders
of magnitude for d = 2.5. Only for the “most quantum”
resonances, with very small real parts, the increase in ac-
curacy was found to be rather modest. It turned out that
the accuracy of the imaginary parts of the semiclassical
eigenvalues of resonances was less significantly increased
by the first-order corrections; here, second-order correc-
tions would have to be considered.

Although in our calculations we have used literature
values for the semiclassical resonances and for the zeroth
and first-order amplitudes, we could have performed, in
principle, all calculations knowing the exact quantum res-
onances only. The analysis of the exact quantum spectrum
yields the semiclassical amplitudes, which in turn can be
used to calculate the semiclassical resonances. Then, by an
analysis of the difference spectrum between semiclassical
and exact resonances, the first order amplitudes can be
determined, which again can be used to obtain the first-
order corrections to the resonances. Although we have
concentrated in our examples on obtaining first-order ~
corrections, it is evident from our discussion that the next-
order corrections could be obtained iteratively in an anal-
ogous manner by repeated application of equations (17),
and (23, 24), respectively.

In summary, we have demonstrated that harmonic in-
version – as a means for circumventing the convergence
problems of semiclassical trace formulae – is indeed a
very efficient and universal tool, not only for semiclas-
sical quantization, but also for the explicit calculation of
higher-order ~ corrections to the semiclassical eigenvalues
or resonances even in chaotic systems. Moreover, harmonic
inversion does not rely on specific assumptions for the sys-
tems under consideration, and therefore an application of
the methods presented in this paper to other chaotic sys-
tems will be promising and worthwhile.

We are grateful to G. Vattay for sending us the code for
the calculation of the first-order corrections to the Gutzwiller
formula for chaotic billiards. We thank A. Wirzba for com-
municating to us quantum mechanical and semiclassical reso-
nances of the three-disk system. This work was supported by
Deutsche Forschungsgemeinschaft and Deutscher Akademis-
cher Austauschdienst.
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